Oxalate-Metabolising Genes of the White-Rot Fungus Dichomitus squalens Are Differentially Induced on Wood and at High Proton Concentration
نویسندگان
چکیده
Oxalic acid is a prevalent fungal metabolite with versatile roles in growth and nutrition, including degradation of plant biomass. However, the toxicity of oxalic acid makes regulation of its intra- and extracellular concentration crucial. To increase the knowledge of fungal oxalate metabolism, a transcriptional level study on oxalate-catabolising genes was performed with an effective lignin-degrading white-rot fungus Dichomitus squalens, which has demonstrated particular abilities in production and degradation of oxalic acid. The expression of oxalic-acid decomposing oxalate decarboxylase (ODC) and formic-acid decomposing formate dehydrogenase (FDH) encoding genes was followed during the growth of D. squalens on its natural spruce wood substrate. The effect of high proton concentration on the regulation of the oxalate-catabolising genes was determined after addition of organic acid (oxalic acid) and inorganic acid (hydrochloric acid) to the liquid cultures of D. squalens. In order to evaluate the co-expression of oxalate-catabolising and manganese peroxidase (MnP) encoding genes, the expression of one MnP encoding gene, mnp1, of D. squalens was also surveyed in the solid state and liquid cultures. Sequential action of ODC and FDH encoding genes was detected in the studied cultivations. The odc1, fdh2 and fdh3 genes of D. squalens showed constitutive expression, whereas ODC2 and FHD1 most likely are the main responsible enzymes for detoxification of high concentrations of oxalic and formic acids. The results also confirmed the central role of ODC1 when D. squalens grows on coniferous wood. Phylogenetic analysis revealed that fungal ODCs have evolved from at least two gene copies whereas FDHs have a single ancestral gene. As a conclusion, the multiplicity of oxalate-catabolising genes and their differential regulation on wood and in acid-amended cultures of D. squalens point to divergent physiological roles for the corresponding enzymes.
منابع مشابه
Oxalate decarboxylase of the white-rot fungus Dichomitus squalens demonstrates a novel enzyme primary structure and non-induced expression on wood and in liquid cultures.
Oxalate decarboxylase (ODC) catalyses the conversion of oxalic acid to formic acid and CO(2) in bacteria and fungi. In wood-decaying fungi the enzyme has been linked to the regulation of intra- and extracellular quantities of oxalic acid, which is one of the key components in biological decomposition of wood. ODC enzymes are biotechnologically interesting for their potential in diagnostics, agr...
متن کاملThe white-rot fungi Phlebia radiata and Dichomitus squalens in wood-based cultures: expression of laccases, lignin peroxidases, and oxalate decarboxylase
Tiivistelmä (Abstract in Finnish)
متن کاملSaccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens
White rot fungus Dichomitus squalens is an efficient lignocellulose degrading basidiomycete and a promising source for new plant cell wall polysaccharides depolymerizing enzymes. In this work, we focused on cellobiohydrolases (CBHs) of D. squalens. The native CBHI fraction of the fungus, consisting three isoenzymes, was purified and it maintained the activity for 60 min at 50°C, and was stable ...
متن کاملFunctional diversity in Dichomitus squalens monokaryons
Dichomitussqualens is a white-rot fungus that colonizes and grows mainly on softwood and is commonly found in the northern parts of Europe, North America, and Asia. We analyzed the genetic and physiological diversity of eight D. squalens monokaryons derived from a single dikaryon. In addition, an unrelated dikaryon and a newly established dikaryon from two of the studied monokaryons were includ...
متن کاملComplementary substrate-selectivity of metabolic adaptive convergence in the lignocellulolytic performance by Dichomitus squalens
The lignocellulolytic platform of the wood-decaying organism Dichomitus squalens is important for production of biodegradable elements; however, the system has not yet been fully characterized. In this study, using statistical target optimization, we analysed substrate selectivity based on a variety of D. squalens metabolic pathways using combined omics tools. As compared with the alkali-lignin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014